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luster analysis of Euler deconvolution solutions: New filtering
echniques and geologic strike determination
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ABSTRACT

Euler deconvolution often presents the problem of filtering
coherent solutions from uncorrelated ones. We have applied
clustering and kernel density distribution techniques to a Eu-
ler-generated data set. First a kernel density distribution algo-
rithm filters uncorrelated Euler solutions from those consis-
tently located near an anomalous magnetic-gravimetric
source. Then a fuzzy c-means clustering algorithm is applied
to the filtered data set. The computation of cluster centers re-
duces the size of the data set considerably, yet maintains its
statistical consistency. Finally, the computation of eigenvec-
tors and eigenvalues on the cluster centers yields an estimate
of the geologic strike of the anomalous sources responsible
for the observed geophysical anomalies. Therefore, we can
obtain an improved strike and depth estimation of the mag-
netic sources. Although the algorithm can filter and cluster
any Euler data set, we recommend obtaining the best solu-
tions possible before any clustering. Hence, we have used a
hybrid 3D extended Euler and 3D Werner deconvolution al-
gorithm. We have developed synthetic and real examples
from the Bathurst Mining Camp �New Brunswick, Canada�.
The output of this algorithm can be used as an input to any 3D
geologic-modeling package.

INTRODUCTION

Euler deconvolution has become a very popular tool as an aid to
nterpreting profile or gridded magnetic data �Reid et al., 1990�. It
rovides automatic estimates of anomalous source locations and
heir depths. In its usual standard 3D form, it requires a priori knowl-
dge of the rate of decay of the field �known as the structural index�.
his method can lead to wrong results if the geologic knowledge of

he associated sources of the observed potential field anomalies is
imited �Reid et al., 1990�.
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Low signal-to-noise ratio, violations of the homogeneity condi-
ion involved in the basic Euler equation, and superposition of sourc-
s all cause Euler solutions to form broad clouds instead of dense
lusters, making it difficult to outline the boundaries of the associat-
d causative sources. Traditional discrimination techniques used to
emove spurious solutions are based on a combination of the follow-
ng criteria �Fitzgerald et al., 2004�: a threshold of the ratio of esti-

ated depth to the standard deviation of the depth �Thompson,
982�; solutions falling outside the x- and y-coordinates of the
resent data window; a threshold of signal strength of the anomaly;
patial binning of solutions; and low-pass filtering of the data to con-
train the frequency content �i.e., rejecting high-frequency features
ssociated with shallow sources� before running the actual deconvo-
ution. However, these discrimination techniques cannot evaluate
he overall quality of the solutions or determine how dense/compact
he clusters are.

Silva and Barbosa �2003� derive estimators for the horizontal and
ertical source positions as a function of the x-, y- and z-gradients of
magnetic anomaly within a data window. In that way, they can con-
train the region where good solutions will be generated and there-
ore decrease the overall dispersion. Gerovska and Arauzo-Bravo
2003� present a different approach for decoupling the coordinates
f the magnetic sources from their associated structural index by us-
ng a differential similarity transform �DST�. They also cluster the
olution database and apply statistics to filter out spurious x-, y-, and
-coordinates. Other innovative techniques for filtering and classify-
ng the Euler output database involve the use of artificial intelligence
Mikhailov et al., 2003�.

Extensions of Euler deconvolution, such as the 2D extended Euler
econvolution �Mushayandebvu et al., 2001� or combined analytic
ignal with Euler �AN-EUL� �Salem and Ravat, 2003�, rely on either
he use of simplified models �thin-dike, vertical contacts� �Mush-
yandebvu et al., 2001; Cooper, 2006�, which limits the applicability
f the method to only specific cases; the combined solution of Euler
econvolution by means of using analytic signal peaks �Salem and
avat, 2003�; or the application of Euler deconvolution to the ana-

ytic signal, thereby solving for the source location and structural in-
ex �Keating and Pilkington, 2004; Florio et al., 2006�.
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L62 Ugalde and Morris
Interpretation of the analytic signal amplitude �ASA� �Nabighian,
972; Roest et al., 1992� instead of regular total magnetic intensity
TMI� has many advantages, such as enhancing the gradients and
oncentrating the gradients of all three directions in one function.
owever, like any gradient-based method, it will suffer from noise

nhancement unless care is taken when computing the derivatives.
he AN-EUL method works well in cases when there is sufficient
ignal for the ASA to map edges or contacts effectively. However,
ecause part of the algorithm involves finding the peaks of the ASA
nd then solving the Euler equation on those peaks, it has problems
n areas like deep sedimentary basins, where the sources are deeply
uried and only produce small amplitudeASApeaks.

In this article, we focus on the classification and filtering of Euler
olutions and the subsequent extraction of geologic information
strike, depth� that can be used by other geologic-modeling packag-
s. Although here we test the algorithm with a hybrid 3D extended
uler and 3D Werner deconvolution data set �Nabighian and Hans-
n, 2001; Reid and Fitzgerald, 2005�, the selection and filtering of
olutions and the extraction of structural geologic information is an
mportant matter regardless of the variation of Euler deconvolution
eing used. This work focuses on the use of kernel density estima-
ion and clustering analysis techniques. This method can therefore
e applied to any Euler solution data set, regardless of the computa-
ional method.

METHODOLOGY

This work focuses on the analysis of Euler deconvolution solu-
ions instead of Euler deconvolution computation. Therefore our

ethod can start with the output of any Euler deconvolution algo-
ithm, and then we classify the Euler solution data set. Classification
f the data set is accomplished according to similarities among the
ata. However, to obtain good results, we recommend using the best
uler algorithm for the first stage, and therefore we use a hybrid 3D
xtended Euler and 3D Werner algorithm �Nabighian and Hansen,
001; Reid and Fitzgerald, 2005�.

The 3D equation for Euler deconvolution is originally given by
eid et al. �1990� and rewritten by Nabighian and Hansen �2001� as

�x�x0�
�T

�x
� �y�y0�

�T

�y
� �z�z0�

�T

�z
�N�T�B���,

�1�

here �x0,y0,z0� is the position of a source whose total magnetic field
is measured at a point �x,y,z�; B and N are the regional magnetic

eld and structural index, respectively, and � is a constant that nor-
ally vanishes except for N�0.
Mushayandebvu et al. �2001� derive the extended Euler method

rom the observation that potential fields are invariant under rota-
ions.Applying Hilbert transforms in the local east �x� and north �y�,
iving Hx�T� and Hy�T�, respectively, leads to two new equations
Fitzgerald et al., 2004�:

�x�x0�
�Hx�T�

�x
� �y�y0�

�Hx�T�
�y

� �z�z0�
�Hx�T�

�z

�NH �T��� , �2�
x x
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�Hy�T�

�x
� �y�y0�

�Hy�T�
�y

� �z�z0�
�Hy�T�

�z

�NHy�T��� y, �3�

here � x and � y are constants that also vanish except for N�0.
This general result, that if a solution of Laplace’s equation satis-

es a Euler equation with index N, so do its generalized Hilbert
ransforms �Nabighian and Hansen, 2001�, allows the direct solution
or depth with reduced uncertainty and with no need to assume any
xed value of the structural index �Reid and Fitzgerald, 2005�.
Because the 3D Euler deconvolution method estimates the hori-

ontal and vertical source coordinates for each position of the mov-
ng data window spanning the gridded data, Euler solutions form
road clouds. The main idea of our classification approach is the hy-
othesis that passing a moving data window over an area of a real
eologic source and its associated geophysical anomaly should re-
ult in a population of similar Euler solutions with a mean �or medi-
n, to minimize the effect of outliers� that approximates the optimum
olution. The identification of these zones is achieved through an ap-
roach of combined cluster analysis and kernel density estimation.
nce the best possible Euler solution data set has been extracted

rom Euler deconvolution �in this case, 3D extended Euler and 3D
erner deconvolutions combined�, the solution-classification and

ltering algorithm is divided into three parts: �1� kernel density esti-
ation to reject uncorrelated solutions, �2� fuzzy c-means clustering

FCM� of the filtered solutions �see Appendix A�, and �3� eigenvec-
or computation on the clustered �filtered� data set to derive the main
eologic strike of the mapped structures.

ernel density estimation

Kernel density estimation is used to reject solutions that are not
art of a dense cluster and that are sparsely located, and do not follow
consistent geologic trend and can therefore be classified as undes-

red. A trivariate kernel density estimation is used to find the likeli-
ood of a point x0� �x0,y0,z0� to be in the vicinity of a cluster center

c� �x,y,z�.
The trivariate kernel density distribution, with kernel K and win-

ow width h of a sample of a random variable �x1,x2, . . . ,xn�, is given
y

fh�x��
1

nh3 �
i�1

n

K�x�xi

h
�, �4�

here x,xi �R3, n is the sample size �in this case, the number of Eu-
er solutions being analyzed�, and K is a radially symmetrical trivari-
te density distribution, defined by

K�x�� �2���3/2 exp��
1

2
xTx� . �5�

As h tends to zero, its effect on the kernel density distribution will
e a sum of Dirac delta functions at the observation points, thus em-
hasizing noisy features in the data, whereas as h becomes large, all
etail in the data is obscured because of oversmoothing �Silverman,
986�. Therefore, an optimum value of h must be chosen between
hose extremes.
 SEG license or copyright; see Terms of Use at http://segdl.org/
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Cluster analysis of Euler solutions L63
Given an n-point sample x of a function, with standard deviation
, the normal scale rule allows the computation of h as

h�
1.6�

�5 n
. �6�

his result is valid for normally distributed data sets. For nonnormal,
ultimodal data, the normal scale rule will oversmooth the data. In

ractice, given a Euler solutions data set of size n and standard devia-
ion � , equation 6 is used to compute the window size h. Equations 4
nd 5 are then used to compute the trivariate kernel density distribu-
ion of the data set.

The kernel density estimation filters uncorrelated solutions from
hose that do form dense clouds. To do that, a threshold is chosen by
nspection to ensure that most of the uncorrelated solutions are re-
ected and most of the coherent data are kept. The next step is applied
n the filtered data set.

uzzy c-means clustering

Once the selected Euler solution data set has been classified in
erms of coherent solutions versus undesired solutions, an FCM al-
orithm is applied to obtain the centers �x,y,z� of c clusters within
he filtered data set. These clusters represent the main geologic struc-
ures being mapped. The major drawback of the algorithm is that the
umber of clusters c needs to be defined before the actual computa-
ion �Balasko et al., 2005�. One alternative is to do the clustering for
ifferent values of c and then compute validity indexes for every par-
ition to assess the goodness of each. Some common indexes used for
his matter are the partition index �SCI� �Balasko et al., 2005� and the
ie and Beni index �XBI� �Xie and Beni, 1991�. The expressions for
oth indexes are given inAppendix A.

The SCI is the ratio of the sum of compactness and separation of
he clusters. It is useful when comparing different partitions having
he same number of clusters. A lower value of SCI indicates a better
artition. The XBI is a normalized index between 0 and 1, and the c
or which the XBI is minimum indicates the optimum number of
lusters. In our case, both XBI and SCI gave consistently similar re-
ults, so we were able to use them jointly. In case of a large disparity
etween them, we recommend plotting the cluster locations for both
ases and doing a close inspection, and then deciding which result is
ore meaningful from a geologic perspective.

etermination of geologic strike of sources mapped

The interpreter must define a distance threshold around each clus-
er to keep only those points within that defined distance from each
luster. A common threshold is being used for all clusters, but a
hreshold could be defined specifically for each cluster, although that
ould require more user input and some degree of automation would
e lost. In our case, this common threshold was chosen by inspec-
ion; however, its value could be determined automatically by some
orm, such as a percentage of the average distance between data
oints and cluster centers.

Given a set of c clusters found in the previous stage, we define for
ach cluster Nj as the number of points preserved on the jth, cluster
j, j�1, . . . ,c. We build the partition matrix DikA according to equa-
ion A-10. Eigenvectors and eigenvalues are computed for each of
hese 3�3 matrices. The eigenvalues provide a means of ranking
Downloaded 10 Jun 2010 to 216.254.170.134. Redistribution subject to
he goodness of the clusters even further, and the eigenvectors give
he orientation �strike and dip� of the cluster center �x,y,z� that esti-

ates the location of the anomalous sources. Eigenvectors on elon-
ated structures can define the strike of the geologic feature of inter-
st.

Although this technique can calculate and provide the actual 3D
rientation of any 3D structure defined by a data set of points in 3D
pace, in real terms the Euler deconvolution solutions cannot map
he dip of the associated anomalous geologic structures. Therefore,
e will focus the analysis of the data in terms of geologic strike.
nly the eigenvector associated to the major eigenvalue was consid-

red for each cluster because this is more representative for the 3D
rientation of its associated points. A further extension of this ap-
roach would be to consider the eigenvectors associated with the
wo major eigenvalues, thus determining the shape and orientation
f the associated source. In the case of one larger eigenvalue, the
ource would be elongated; two similar eigenvalues would yield a
D source with similar dimensions on both major orientations, along
trike and perpendicular to it. Mushayandebvu et al. �2004� describe
similar approach for the discrimination between 2D and 3D sourc-
s, based on the finding of eigenvalues very close to zero.

SYNTHETIC MODEL RESULTS

The algorithm was tested with both synthetic and real data. Be-
ause one of the main goals was to test the ability of the algorithm to
olve for the strike of geologic structures, the synthetic model con-
isted of two highly elongated bodies �Figure 1a�. Both bodies were
00 m thick and had a depth extent of 2000 m. The north-south body
as 4 km long; the east-west one was 8 km long. The depth to top
as 50 m in both cases. The bodies dip at 45° to the east �north-south
ody� and 45° to the south �east-west body�. The ambient field pa-
ameters were total intensity 60,000 nT, inclination 90°, and decli-
ation 0°. No remanent magnetization was added. The magnetic sus-
eptibility of both bodies was 0.0035 structural index. A total mag-
etic intensity �TMI� grid was calculated with north-south lines
paced at 500 m, and at a common observation level of 0 m �Figure
b�. Along the lines, spacing was 10 m. The forward model was cal-
ulated on profiles and then gridded at a 100-m grid cell size by
eans of a standard minimum curvature algorithm. Figure 1c shows
north–south profile through the center of the area. Both the grid and
rofile views of the TMI model show the expected asymmetry of the
agnetic anomalies due to the dip of the bodies.
A hybrid 3D extended Euler and 3D Werner deconvolution algo-

ithm was applied to obtain the depth-to-source solutions �Nabig-
ian and Hansen, 2001; Reid and Fitzgerald, 2005�. To concentrate
he solutions near the top of the bodies, a window of 500�500 m
as used, and as explained in the previous section, the algorithm

olved for the structural index of the sources too, so no a priori infor-
ation on the structural index was required. The algorithm generat-

d approximately 12,300 solutions over the area of 20�20 km. Af-
er some standard masking based on the structural index �SI �1.5 to
reserve sources associated with contacts and thin dikes� and error
onstraints, the solution database was reduced to approximately
500 solutions �blue crosses in Figure 2a�. Although the Euler solu-
ion data set is still quite large, it can map the top of both bodies very
ell.
Subsequently, we applied the kernel density algorithm. We use a

aussian kernel �equation 5� and the normal scale rule �equation 6�
 SEG license or copyright; see Terms of Use at http://segdl.org/
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L64 Ugalde and Morris
o determine the smoothing factor h. Figure 2a shows the results of
he kernel density classification �yellow volume�, superimposed on
he original Euler solution data set �blue�. A 70% probability was
sed as the density cutoff. This value ensured that most of the uncor-

Synthetic model: 3D perspective view
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igure 1. Synthetic model. �a� A 3D perspective view of the caus-
tive bodies; view from the southeast. �b� Total magnetic intensity
aused by the two dipping bodies. See text for details on the model
arameters. �c� North-south cross section along the central part of
he grid �green line on Part b�.
Downloaded 10 Jun 2010 to 216.254.170.134. Redistribution subject to
elated solutions were removed, without losing useful ones. The ap-
lication was able to resolve the areas of higher probability from
hose where the Euler solutions were uncorrelated. Only the points
ithin the yellow volume were kept as valid points. The FCM clus-

ering was applied to a different number of clusters from 2 to 30. The
BI and SCI indexes were computed to determine the optimum
umber of clusters present on the data set, corresponding to the min-
mum value of each index. The XBI showed a minimum at c�21,
nd the SCI had its minimum at c�20. Both numbers were tried and
ielded almost identical results on cluster locations. A value of c

20 was kept as the number of clusters for the next calculations.
Finally, the filtered Euler solution data set was clustered via the

CM algorithm, and the eigenvectors were computed to determine
he strike and of the observed sources. Figure 2b and c shows the lo-
ation of the 20 clusters, again plotted with the entire original data
et for reference. Table 1 summarizes, for each cluster, the estimated
trike from the eigenvector associated with the major eigenvalue.
he results are very consistent, giving a mean strike of 87° for the
ast-west body �true strike 90°� and 5° for the north-south one �true
trike 0°�.

The result of kernel density combined with FCM clustering did in-
eed filter the uncorrelated solutions out of the original Euler solu-
ion data set, and it was successful in mapping the geologic strike of
D dipping sources. The only areas where the estimated strikes
howed some dispersion were the corners of the bodies, which is ex-
ctly where a discontinuity exists from 2D to 3D and therefore the
uler system is not stable �Mushayandebvu et al., 2004�.

APPLICATION: BATHURST MINING CAMP,
NEW BRUNSWICK, CANADA

Finally, we applied the algorithm on a real data set at the Bathurst
ining Camp �BMC� in New Brunswick, Canada �Figure 3�. The
MC is one of the most important base-metal mining districts in
anada. The camp hosts numerous sediment- and volcanic-hosted
assive sulfide deposits and occurrences. However, most major de-

osits were discovered in the 1950s and 1960s; therefore new dis-
overies are critical to avoid a drastic decline in production over the
ext years. Outcrop in the area is scarce; therefore any structural in-
ormation that can be derived from airborne geophysical data is in-
aluable. Figure 3 shows the regional geology of the BMC �after
alley et al., 2007�.
The BMC is primarily composed of Cambrian and Ordovician

edimentary and volcanic rock units, which have been subject to a
omplex history of multigenerational folding, thrusting, and faulting
Van Staal et al., 2003�.An airborne geophysical survey was flown in
996 to aid in the geologic mapping and exploration of the camp.
he line spacing was 200 m, and the magnetic sensor was towed at
0 m above the ground. Flight lines were oriented perpendicular to
he main geologic strike in each of the four subblocks in which the
ntire camp was divided �Geological Survey of Canada, 1996�.

Figure 4a shows the total magnetic field reduced to the pole total
agnetic intensity �RTP-TMI� data over a window of the BMC
here we tested Euler deconvolution and the clustering algorithm.
he magnetic data show the contrast between weakly magnetic fel-
ic volcanic units and basalts, gabbros, and strongly magnetic mafic
olcanic and intrusive units �Keating et al., 2003�. The locations of
wo mineral deposits in the area �Caribou and McMaster� are shown
or reference. Figure 4b shows a 3D perspective view of the geologic
ap draped over the magnetic data. The correlation between the data
 SEG license or copyright; see Terms of Use at http://segdl.org/
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Cluster analysis of Euler solutions L65
ets is good, although some areas apparently do not have any associ-
ted magnetic signature, like the folded units on the southeast part of
he map.Any additional structural information derived from semiau-
omatic interpretation of geophysical data can assist in improving
eologic mapping in areas of scarce outcrop such as the BMC.

As with the synthetic data set, a hybrid 3D extended Euler and 3D
erner deconvolution was applied to the RTP data shown in Figure

a. The algorithm produced approximately 27,000 �x,y,z� solutions
ith depths between 0 and 1000 m �a window size of 1000 m was
sed�.After the usual removal of spurious solutions with high spatial
dXY� and depth uncertainties �dZ� and higher
tructural index so as to preserve solutions associ-
ted with contacts, the Euler solution data set was
educed to approximately 4000 solutions, which
how good correlation with the main geologic
ontacts �Figure 5a-c�. The kernel density routine
as applied first to reduce the number of solu-

ions even further �Figure 5a�. The final results re-
uired a lower probability density cutoff than on
he synthetic model �60% here, as compared with
0% on the synthetic model�. This was due to the
ifferent nature of the data: many small clusters
ith a few outliers, compared with a couple of

arge clusters with many outliers on the synthetic
odel. Subsequently, the FCM clustering algo-

ithm was applied to this data set. After running it
ith different cluster numbers and determining

he minimum on both XBI and SCI indexes, an
ptimum number of 123 clusters were deter-
ined. Cluster locations are shown on Figure 5b,

nd the structural information derived from them
s shown on Figure 5c.

The strike information derived from this algo-
ithm follows the folded structures in the BMC
uite closely, and it should be of good use for any
ubsequent geologic-modeling attempts in the
rea.

DISCUSSION

The algorithm presented here is far from an au-
omatic recipe for structural mapping from geo-
hysical data. There are many parameters to be
etermined during the calculation, and good re-
ults depend on a proper selection of them. None-
heless, the results of the combined kernel density
nd FCM clustering algorithm on a good-quality
uler data set are quite satisfactory and should be
f good use as input for geologic modeling and
tructural analysis.

Undoubtedly, the algorithm selected for the
uler deconvolution is critical for the success of

he final result �geologic strike and depth estima-
ions�. Although the methodology presented here
ill filter data even if the Euler solution data set is
ot well constrained, the strike and depth infor-
ation obtained will not be meaningful unless the

ata are well correlated and follow actual geolog-
c structures. The hybrid 3D extended Euler and
D Werner method used here gave excellent re-
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ults in terms of solution coherency; therefore the strike information
as authentic in both the synthetic and real data examples.
The kernel density estimation does a good job of filtering undes-

red Euler solutions. However, it seems to have some difficulties
hen the data are sparsely located, as on the BMC example shown
ere. The algorithm works by computing the kernel density estima-
ion and then filtering the data based on a percentage cutoff or mini-
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les�. See text for details on the calculation parameters.
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L66 Ugalde and Morris
um probability. Thus, it tends to generate large closed surfaces at
hat probability cutoff. For the case of distributions where the corre-
ated data cluster in only a few areas with noncorrelated points
round �e.g., example in Figure 2a�, enclosing the higher probability
oints in a large surface does work well. For the case in which the di-
ision between correlated and uncorrelated data is more diffuse be-
ause of the presence of multiple small clusters with some uncorre-
ated data around, the algorithm requires more trials to find the right
robability cutoff.One option not tried here is to divide the data into
maller windows and apply the kernel density estimation and cutoff
n those smaller windows.

The FCM clustering algorithm is very stable. Both applications
synthetic and real data� gave very good results in terms of partition-
ng the data into proper clusters and recognizing the major clouds
rom the sparsely located solutions.

The addition of the eigenvector computation and its associated

able 1. Cluster locations, major eigenvalue (EigVal), associat
he results on the synthetic data set. For consistency in the da
ast-west body (top 10 solutions) and north-south body (botto

X
�m�

Y
�m�

Z
�m�

East-west body

4563.31 �7269.95 �1646.02

4537.23 �7265.22 �1728.76

�2585.29 �7229.94 �1247.43

4573.30 �7198.62 �1552.45 �

4560.67 �6981.53 �1318.63 �

2752.97 �6264.22 �119.16

�3169.00 �6191.54 �144.99

5063.47 �6116.29 �452.93 �

�3126.92 �6096.90 �502.10

758.31 �6042.17 �283.40

5047.44 �6037.72 �161.01 �

�463.42 �6030.20 �288.26

3520.49 �6021.09 �303.21

2053.45 �6016.91 �301.29

�1779.85 �5976.17 �288.98

North-south body

1109.48 5100.40 �676.77

732.89 5224.03 �168.01 �

1575.17 5318.20 �884.04

�247.93 7303.77 �179.06

987.74 8900.00 �522.25 �
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tructural information is undoubtedly a major step forward toward
inking geophysical data processing with geologic modeling and in-
erpretation. Although in cases like the BMC, where the visual in-
pection of the magnetic anomalies does indeed give the interpreter
good idea of the geologic strike of the main structures, a systematic
nd unbiased approach like this one goes a step further, automating
he process and providing a numerical table of coordinates and
trike, which can subsequently be used as input for other geologic-
odeling packages.
Although the methodology was applied mostly to derive the strike

irections and depth of anomalous bodies, it undoubtedly can be ap-
lied to other problems such as model construction �instead of inver-
ion for physical properties� and depth to basement, which can be
olved through the analysis of the depth to top of anomalous bodies
hrough Euler deconvolution and the filtering and classification
cheme presented here.

envector (Eig), and computed strike (Str) information for
lysis, the table is divided into two segments associated to the
lutions).

Eig Y Eig Z EigVal
Str
�°�

2 0.0920 0.9843 0.03 83.85

8 0.0825 0.9862 0.03 84.64

5 0.0993 0.9945 0.08 84.19

6 0.0907 0.9910 0.04 84.57

4 0.0253 0.9859 0.04 88.51

7 �0.0249 �0.0016 0.32 88.57

8 �0.0670 0.1537 0.33 86.11

2 0.0406 0.5248 0.13 87.27

2 0.0141 0.7648 0.14 88.75

1 0.0061 �0.1660 0.19 89.65

1 0.0149 0.0873 0.26 89.14

9 �0.0355 0.1859 0.19 87.93

9 �0.0553 0.0348 0.18 86.83

0 0.0049 �0.2038 0.21 89.71

8 �0.0209 0.2266 0.22 88.77

Mean 87.23

Std 2.07

3 �0.5058 �0.9937 0.17 4.22

9 0.8216 �0.5180 0.19 9.53

6 �0.3523 �0.9932 0.21 2.05

3 0.8338 �0.2105 0.31 3.52

8 0.8453 0.9925 0.46 6.00

Mean 5.06

Std 2.87
ed eig
ta ana
m 6 so

Eig X

0.853

0.879

0.976

0.953

0.975

0.999

0.985

0.850

0.644

0.986

0.996

0.981

0.997

0.979

0.973

0.037

0.137

0.012

0.051

0.088
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Carboniferous Middle Ordovician - Lower Silurian

Upper Silurian
- Devonian

Silurian

Cambrian - Lower Ordovician

Late Neoproterozoic - Lower Cambrian

N

Figure 3. Location map of the Bathurst Mining
Camp, New Brunswick, Canada �left� and regional
geology �right�; VMS indicates volcanogenic mas-
sive sulfide. The blue rectangle on the geologic
map marks the approximate location of area shown
on Figures 4 and 5. Regional geology from Galley
et al. �2007�.
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Figure 4. �a� Pole-reduced total magnetic intensity map over the area
of study. The locations of two deposits in the area �Caribou and Mc-
Master� are shown for reference. �b� A 3D composite built with the
regional geologic map draped over the RTP map from �a�.
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CONCLUSIONS

We present a new algorithm for the filtering of Euler solutions.
he method not only can discriminate between “good” and “bad” so-

utions, but also provide the strike and average depth of the geologic
ources, which can then be used as input for 3D geologic-modeling
lgorithms. The algorithm was tested on one synthetic data set and
ne real data set at the Bathurst Mining Camp �BMC� in New Brun-
wick, Canada.At the BMC, the kernel density distribution and clus-
ering method presented here was able to add some structural infor-

ation over an area of scarce outcrop.
Further work involves the refinement of the kernel density and

lustering algorithms to determine optimum threshold values for the
ernel density and number of clusters. In its present state, the algo-
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igure 5. Application of the kernel density and FCM clustering alg
ata set. �a� A 3D perspective view of the kernel density �yellow�, wi
econvolution solutions �blue crosses� for reference. �b� Cluster l
ver the kernel density filtered data set. �c� Regional geology of the B
l., 2007� and RTP-TMI data from �a�, 50% transparency. Strike estim
ary eigenvectors of each cluster are shown as blue lines.
Downloaded 10 Jun 2010 to 216.254.170.134. Redistribution subject to
rithm requires the FCM clustering routine to be
run with different cluster numbers to determine
the optimum solution set. This is computationally
inefficient and can be considerably slow for large
data sets. The minimization of anomaly interfer-
ence effects through curvature-based filtering of
magnetic/gravity sources prior to the application
of Euler deconvolution is an area that needs fur-
ther development as well.
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APPENDIX A

FUZZY C-MEANS CLUSTERING

General definitions

Assume that we have a data set representing
observations of n variables. Each observation
consists of n measured variables grouped into an
n-dimensional vector xk ��xk1,xk2, . . . ,xkn�T. Let
X be an N�n data matrix whose rows correspond
to the N observations and whose columns corre-
spond to the n variables defining each solution:

X��x11 . . . x1n

] � ]

xN1 ¯ xNn
	 . �A-1�

Depending on the objective of the clustering, var-
ious definitions of a cluster can be formulated.
Generally, one might accept that a cluster is a
group of objects that are more similar to one an-

ther than to members of other clusters. In metric spaces, the term
similarity” is often defined by means of a distance norm.

Clusters are subsets of the main data set. In general terms, two
lustering methods can be defined, hard or fuzzy. Hard clustering re-
uires that an object either does or does not belong to a cluster. For a
iven data set X, hard clustering means partitioning it into c mutual-
y exclusive subsets of X �clusters�. More formally, a hard partition
an be defined as a family of subsets 
Pi �1� i�c� P�X�� that satis-
es the following properties:

�
i�1

c

Pi�X, �A-2�

P �P , 1� i� j�c, �A-3�
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��Pi�X, 1� i�c . �A-4�

n other words, all the subsets Pi contain all the data in X, they are
isjoint, and none of them is empty or contains all the data in X. In
erms of membership functions, where �i is a characteristic function
f the subset Pi, with a value of zero or one, and denoting �i�xk� by
ik, we can represent hard partitions in matrix notation.
An N�c matrix U�
�ik� represents a hard partition of X if and

nly if its elements satisfy

�ij �0,1, 1� i�N, 1�k�c, �A-5�

�
k�1

c

�ik�1, 1� i�N, �A-6�

0� �
i�1

N

�ik�N, 1�k�c . �A-7�

ow, fuzzy partitioning can be seen as a generalization of hard parti-
ioning, where the �ik are allowed to attain real values in the interval
0,1� instead of the discrete values 0 or 1 defined in equation A-5.An
�c matrix U�
�ik� represents a fuzzy partition of X if and only if

ts elements satisfy both conditions A-6 andA-7 from above, as well
s

�ij � 
0,1�, 1� i�N, 1�k�c . �A-8�

uzzy c-means clustering algorithm

The fuzzy c-means clustering algorithm is based on the minimiza-
ion with respect to U and V of an objective function called the
-means functional, defined as �Balasko et al., 2005�

J�X,U,V�� �
i�1

c

�
k�1

N

��ik�md2
ikA

� �
i�1

c

�
k�1

N

��ik�m�A1/2�xk�vi��
2

A, �A-9�

here V� 
v1,v2, . . . ,vc�, vi �Rn is a matrix of cluster centers �to be
etermined�, �·� is the Euclidian norm, A is an n�n diagonal matrix,
nd d2

ik represents the individual distances between xk and vi. Statis-
ically, the above equation can be seen as a measure of the total vari-
nce of xk from vi.

The ikth element of the matrix of distances D2 between each data
oint �the vector xk� and every cluster center �the vector vi� is com-
uted as

D2�
Dik
2 �� �xk�vi�TA�xk�vi�,

1� i�c and 1�k�N, �A-10�

here the matrix A can be chosen to control the shape and orienta-
ion of the clusters. If A�I, where I is an identity nth-order matrix,
he clusters will present the same shape and orientation �Balasko et
l., 2005�. Otherwise, we can define
Downloaded 10 Jun 2010 to 216.254.170.134. Redistribution subject to
A��
�1/� 1�2 0 . . . 0

0 �1/� 2�2
¯ 0

] ] � ]

0 0 � �1/� n�2
	, �A-11�

here � i is the ith variance in the direction of the coordinate axis of
.
The minimization of J�X,U,V� with respect to U and V is a non-

inear optimization problem that can be solved by using a variety of
vailable methods. The fuzzy c-means algorithm iterates through the
rst-order conditions A-6–A-8 by means of Lagrange’s multipliers
k,k�1, . . . ,N:

J�X,U,V,	�� �
i�1

c

�
k�1

N

��ik�md2
ikA� �

k�1

N

	k��
i�1

c

�ik�1�,

�A-12�

nd by setting the gradients of J with respect to U, V, 	 to zero �Bal-
sko et al.,2005�. If d2

ik 
 0,∀ i,k and m 
 1, then �U,V��Mfc

Rn�c will minimize equation A-12 only if

�ik�
1

�
j�1

c

�dikA/djkA�2/�m�1�

, 1� i�c, 1�k�N,

�A-13�

nd

vi�

�
k�1

N

�ik
mxk

�
k�1

N

�ik
m

, 1� i�c . �A-14�

his solution also satisfies the conditions A-6–A-8. Equation A-14
ives vi as the weighted mean of the data items that belong to a clus-
er, where the weights are the membership degrees. The overall FCM
lgorithm is iterative through equations A-13 and A-14. Therefore,
iven a number of clusters c and an error tolerance of � 
 0, equa-
ions A-14 and A-13 are used to compute vi and the partition matrix,
espectively, until the partition satisfies �U�l��U�l�1�� � �, where

�l� represents the partition matrix at iteration l, composed of ele-
ents �ik from equation A-13.

artition validation indexes

By using the same notation as above, the partition index �SCI� is
efined as

SCI�c�� �
i�1

c �
j�1

N

��ij�2�x j�vi�2

Nmini,k
�vk�vi�2 . �A-15�

his index is useful when comparing different partitions with the
ame number of clusters.Alower SCI indicates a better partition.

The Xie and Beni index �XBI� is given by
 SEG license or copyright; see Terms of Use at http://segdl.org/
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XBI�c��

�
i�1

c

�
j�1

N

��ij�2�x j�vi�2

Nmini,j
�x j�vi�2 . �A-16�

his index aims at quantifying the ratio of the total variation within
lusters and their separation. The optimal number of clusters should
inimize the value of this index �Xie and Beni, 1991; Balasko et al.,

005�.
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